Radiomics for Disease Characterization: An Outcome Prediction in Cancer Patients

Magnuson, S. J., Peter, T. K., and Smith, M. A.

Department of Biostatistics

University of Iowa

July 19, 2018

Background-Information

- Lung cancer is the leading cause of cancer-related mortality in the United States
- 234,030 new cases expected in 2018
- 200 CT scans from University of Iowa Hospital Patients
- 410 quantitative imaging biomarkers (Intensity, Shape, Texture) used for analysis
- 5 patient demographics (Lobe, Age, Race, Gender, Packs per Year)
- 45% of cases were benign and 55% of cases were malignant

Project Objective

To develop a statistical model to predict lesion malignant/benign status of each patient

Background – Descriptive Statistics

	Age (years)	Packs Smoked (per year)
Minimum	24	0
Mean	59.88	26.18
Median	60	20
Maximum	90	150

Background – Descriptive Statistics

Number of Male and Female Patients

Background – Descriptive Statistics

Number of African/American, Asian, Caucasian, Hispanic, and Native American Patients

Due to the high correlation of predictors, we look for the removal of noninformative/redundant variables to improve model stability and performance

Filtering Variables

Methods for Data-filtering

- 1. Correlation: remove predictors so that all pairwise correlations are below a specified threshold (0.95)
- 2. Near Zero Variance: remove variable predictors that are constants

When applied to the full data set, 348 predictors were removed

Model Selection and Assessment

Model Selection and Assessment-AUC

- AUC: area under the receiver operating characteristic (ROC) curve
- Estimates the probability that a randomly selected subject with a malignant lesion will have a greater model predicted probability than a randomly selected subject with a benign lesion
- The closer AUC is to 1.0 (100% specificity and 100% sensitivity), the better the predictive performance
- The closer AUC is to 0.50, the worse the test

Model Selection and Assessment-AUC

Range	Scale
0.97-1.00	Excellent
0.92-0.97	Very Good
0.75-0.92	Good
0.50-0.75	Fair

K-Fold Repeated Cross-Validation

Cross-Validation Estimate of the Performance Metric, AUC:

$$AUC = \frac{1}{50} \sum_{r=1}^{5} \sum_{k=1}^{10} AUC_{rk}$$

Model details, filtering vs. non-filtering

Model Details- Elastic Net

- Logistic regression finds parameters that maximize the binomial likelihood function, L(p)
- The parameters can be regularized by adding a penalty to the likelihood function
- There are two types of penalties to add:
 - 1. Ridge
 - **2.** LASSO (least absolute shrinkage and selection operator)
- Elastic Net combines the two types of penalties

Model Details- Elastic Net

$$\log L(p) - \lambda \left[(1 - \alpha) \frac{1}{2} \sum_{j=1}^{P} \beta_{j}^{2} + \alpha \sum_{j=1}^{P} |\beta_{j}| \right]$$

- λ controls the total amount of penalization
- α is the mixing percentage (when $\alpha = 1$ it is a pure lasso penalty; when $\alpha = 0$ it is a pure ridge-regression-like penalty)
- This enables effective regularization via the ridge-type penalty with the feature selection quality of the LASSO penalty

Filtering vs. Non-filtering- Elastic Net

Random Forest

Decision trees, Model Details, filtering vs. non-filtering 🥖

A Forest of Decision Trees

We can apply the same concept of decision making to classifying data.

Random Forest – Model Details

decision trees to improve accuracy and reduce prediction variability

Filtering vs. Non-filtering- Random Forest

Stochastic Gradient Boosting

Model details, filtering vs. non-filtering

Model Details-Stochastic Gradient Boosting

- Influenced by Learning Theory: a number of weak classifiers are combined to produce an ensemble
- Basic Principles of Boosting:
 - 1. The algorithm seeks to find an additive model of decision trees to minimize a given loss function
 - 2. Algorithm initialized with best guess of the response
 - 3. The gradient (residual) is calculated and a model is fit to the residuals
 - 4. Current model added to the previous model
 - 5. Procedure continues for a specified number of iterations

Model Details- Stochastic Gradient Boosting

- Boosting bears similarities to Random Forest and both models give equal predictive performance
- Random Forest and Boosting are constructed differently
- In Random Forest, all trees are created independently and each tree is created to have maximum depth and all trees contribute equally
- In Boosting, the trees are dependent on past trees, have minimum depth, and contribute unequally to the model

Filtering vs. Non-filtering: Stochastic Gradient Boosting

Magnuson, Peter, Smith (Wheaton)

Model Comparison

Index: Method to identify a probability cut point that optimizes the sensitivity and specificity with respect to the prevalence rate and the cost

$$index = \min((1 - sens)^2 + r * (1 - spec)^2)$$
, where

$$r = \frac{(1 - p)}{(cost * p)}$$
and

$$p = prevalence = 0.50$$

and

$$cost = \frac{false\ negative}{false\ positive} = 4.0$$

Index Table: Stochastic Gradient Boosting

Stochastic Gradient Boosting	Index (mean)	Sensitivity (mean)	Specificity (mean)	:
0.5	0.12	0.70	0.78	s
0.45	0.09	0.78	0.71	S
0.40	0.07	0.86	0.63	S
0.35	0.06	0.90	0.59	

Main takeaways, future work

Magnuson, Peter, Smith (Wheaton)

Main Takeaways and Future Work

- The Stochastic Gradient Boosting model had the best performance, considering its high AUC and relatively low variability
- The filtering helped the Random Forest models noticeably
- The logistic regression using only the demographic predictors performed the best
- However, using the biomarkers alone did improve predictive performance
- Plan to explore the index values further
- Plan to explore deep neural networks

Acknowledgments

Dr. Brian J. Smith, Professor, Dept. of Biostatistics University of Iowa

National Heart, Lung, and Blood Institute (NHLBI), grant #HL131467

References

- Kuhn, M., & Johnson, K. (2016). *Applied Predictive Modeling*. New York: Springer.
- Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan and Tyler Hunt. (2018). caret: Classification and Regression Training. R package version 6.0-80. https://CRAN.R-project.org/package=caret
- R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>
- Smith, Brian J. (2018) BIOS6720, [PDF]. University of Iowa, Department of Biostatistics

Thank You!

Variable Importance – Elastic Net Variable Importance Plot for Elastic Net

Variable Importance – Random Forest Variable Importance Plot for Random Forest

Variable Importance – Logistic Variable Importance Plot for Logistic

