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Background- Information
• Lung cancer is the leading cause of cancer-related mortality in the 

United States

• 234,030 new cases expected in 2018

• 200 CT scans from University of Iowa Hospital Patients

• 410 quantitative imaging biomarkers (Intensity, Shape, Texture) used for 
analysis 

• 5 patient demographics (Lobe, Age, Race, Gender, Packs per Year)

• 45% of cases were benign and 55% of cases were malignant
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Project Objective 
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To develop a statistical model to predict lesion malignant/benign status of each 
patient



Background – Descriptive Statistics

Age (years) Packs Smoked (per year)
Minimum 24 0

Mean 59.88 26.18
Median 60 20

Maximum 90 150
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Background – Descriptive Statistics
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Background – Descriptive Statistics
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Data-Preprocessing
Filtering Variables
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Filtering Variables

Due to the high correlation of 
predictors, we look for the 
removal of non-
informative/redundant variables 
to improve model stability and 
performance
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Filtering Variables 
Methods for Data-filtering

1. Correlation: remove predictors so that all pairwise 
correlations are below a specified threshold (0.95)

2. Near Zero Variance: remove variable predictors that are 
constants

When applied to the full data set, 348 predictors were 
removed
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Model Selection and 
Assessment 
AUC and ROC
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Model Selection and Assessment- AUC 
• AUC: area under the receiver operating characteristic (ROC) 

curve 

• Estimates the probability that a randomly selected subject 
with a malignant lesion will have a greater model predicted 
probability than a randomly selected subject with a benign 
lesion

• The closer AUC is to 1.0 (100% specificity and 100% 
sensitivity), the better the predictive performance

• The closer AUC is to 0.50, the worse the test
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Model Selection and Assessment- AUC

Range Scale
0.97-1.00 Excellent
0.92-0.97 Very Good
0.75-0.92 Good
0.50-0.75 Fair
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K-Fold Repeated Cross-Validation
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Original Data

Fold 1

Fold 2

Fold 3
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Elastic Net
Model details, filtering vs. non-filtering 
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Model Details- Elastic Net
• Logistic regression finds parameters that maximize the 

binomial likelihood function, 𝐿𝐿(𝑝𝑝)

• The parameters can be regularized by adding a penalty to 
the likelihood function

• There are two types of penalties to add:
1. Ridge
2. LASSO (least absolute shrinkage and selection operator)

• Elastic Net combines the two types of penalties
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Model Details- Elastic Net
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• 𝜆𝜆 controls the total amount of penalization

• 𝛼𝛼 is the mixing percentage (when 𝛼𝛼 = 1 it is a pure lasso 
penalty; when 𝛼𝛼 = 0 it is a pure ridge-regression-like 
penalty)

• This enables effective regularization via the ridge-type 
penalty with the feature selection quality of the LASSO 
penalty
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Filtering vs. Non-filtering- Elastic Net
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Random Forest
Decision trees, Model Details, filtering vs. non-filtering 
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A Forest of Decision Trees 
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We can apply the same 
concept of decision making 
to classifying data.



Random Forest – Model Details
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Random forest takes a majority vote over a collection of 
decision trees to improve accuracy and reduce 

prediction variability



Filtering vs. Non-filtering- Random Forest
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Stochastic Gradient 
Boosting
Model details, filtering vs. non-filtering
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Model Details-Stochastic Gradient Boosting
• Influenced by Learning Theory: a number of weak classifiers are 

combined to produce an ensemble

• Basic Principles of Boosting:
1. The algorithm seeks to find an additive model of decision trees to 

minimize a given loss function
2. Algorithm initialized with best guess of the response
3. The gradient (residual) is calculated and a model is fit to the 

residuals
4. Current model added to the previous model
5. Procedure continues for a specified number of iterations
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Model Details- Stochastic Gradient Boosting
• Boosting bears similarities to Random Forest and both 

models give equal predictive performance

• Random Forest and Boosting are constructed differently

• In Random Forest, all trees are created independently and 
each tree is created to have maximum depth and all trees 
contribute equally

• In Boosting, the trees are dependent on past trees, have 
minimum depth, and contribute unequally to the model
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Filtering vs. Non-filtering: Stochastic Gradient 
Boosting
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Model Comparison 
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Index: Method to identify a probability cut point that optimizes the sensitivity and 
specificity with respect to the prevalence rate and the cost 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = min 1 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 2 + 𝑟𝑟 ∗ 1 − 𝑠𝑠𝑝𝑝𝑖𝑖𝑠𝑠 2 , where

𝑟𝑟 =
1 − 𝑝𝑝

(𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 ∗ 𝑝𝑝)

and

𝑝𝑝 = prevalence = 0.50

and

𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓

= 4.0
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Index Table: Stochastic Gradient Boosting 
Stochastic 
Gradient 
Boosting 

Index 
(mean)

Sensitivity 
(mean)

Specificity 
(mean)

0.5 0.12 0.70 0.78

0.45 0.09 0.78 0.71

0.40 0.07 0.86 0.63

0.35 0.06 0.90 0.59
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Conclusions
Main takeaways, future work
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Main Takeaways and Future Work
• The Stochastic Gradient Boosting model had the best 

performance, considering its high AUC and relatively low 
variability

• The filtering helped the Random Forest models noticeably

• The logistic regression using only the demographic predictors 
performed the best

• However, using the biomarkers alone did improve predictive 
performance

• Plan to explore the index values further

• Plan to explore deep neural networks

Magnuson, Peter, Smith (Wheaton) 7/19/2018 30



Acknowledgments
Dr. Brian J. Smith, Professor, Dept. of Biostatistics University 
of Iowa

National Heart, Lung, and Blood Institute (NHLBI), grant 
#HL131467

Magnuson, Peter, Smith (Wheaton) 7/19/2018 31



References
• Kuhn, M., & Johnson, K. (2016). Applied Predictive Modeling. New

York: Springer.
• Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre

Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core 
Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan
and Tyler Hunt. (2018). caret: Classification and Regression Training. R package version 6.0-80. 
https://CRAN.R-project.org/package=caret

• R Core Team (2017). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/

• Smith, Brian J. (2018) BIOS6720, [PDF]. University of Iowa,
Department of Biostatistics

Magnuson, Peter, Smith (Wheaton) 7/19/2018 32

https://www.r-project.org/


Thank You!
*Waits for Audience to Clap*
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Variable Importance – Elastic Net
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Variable Importance – Random Forest
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Variable Importance – Logistic 
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