Assessing the Descriptive Epidemiology of Idiopathic Clubfoot in Iowa

Siri Neerchal

University of Maryland, College Park

Mentors: Dr. Jake Oleson & Dr. Paul Romitti University of Iowa

July 19, 2018

SIR		21	ch	10
	1.21		<u>сн</u>	

Clubfoot in Iowa

University of Maryland

Overview

1 Introduction

Siri Neerchal

Clubfoot in Iowa

University of Maryland

What is Clubfoot?

- Also known as talipes equinovarus
- One or both feet are rotated inward
- Common musculoskeletal birth defect (\sim 1 case per 1000 births)
- Causes: unknown

Prior Research

- Iowa Registry for Congenital and Inherited Disorders (IRCID) surveillance data
- Previous epidemiological work in Iowa: 1997-2005 (Kancherla et al.)
- Known associations:
 - Higher prevalence in males
 - Carter effect
 - Exposure to smoking in utero

Project Objectives

- Examine trends in clubfoot prevalence in Iowa
- Estimate associations with selected child and parental characteristics
- Identify geographic hotspots in the state

Clubfoot Cases in Iowa, 1997-2016 (Subsets Considered)

Total	Live	Idiopathic	Bilateral	Unilateral
1358	1194	783	387	396

All Live Births (1997-2016): 774,769

Siri Neerchal

University of Maryland

Prevalence over Time

Siri Neerchal

University of Maryland

Piecewise Regression Model

- Simple linear regression: $\hat{Y} = \beta_0 + \beta_1 X$
- Piecewise regression model:

$$\hat{Y} = \begin{cases} \beta_0 + \beta_1 X & X \le 2009 \\ (\beta_0 - 2009\beta_2) + (\beta_1 + \beta_2) X & X > 2009 \end{cases}$$

 Knot at X = 2009 selected by minimizing mean square error in the interval from 2005 to 2011

Model Comparison

 $eta_0 = 192.424, eta_1 = -0.091, eta_2 = 0.031$ *p*-values: 0.337, 0.363, 0.904

Identifying Risk Factors

- Selected characteristics available in IRCID and Iowa birth certificate data
- Logistic regression (appropriate due to binary outcome variable)
- Prevalence ratios & 95% confidence intervals calculated (using reference category/level for each factor)
- Cases to population comparison

Siri Neerchal Clubfoot in Iowa

Child Characteristics

Siri Neerchal

University of Maryland

Maternal Characteristics

Siri Neerchal

University of Maryland

Paternal Characteristics

Siri Neerchal

University of Maryland

Maternal Exposures

*Data for cigarettes/day, diabetes, infertility treatment & BMI only available for 2007-2016.

	University of Maryland
Clubfoot in Iowa	14/26

Risk Factors

Spatial Analysis

Siri Neerchal

University of Maryland

Total Births by County

Siri Neerchal

University of Maryland

Raw Relative Risk by County

Siri Neerchal

University of Maryland

Poisson Regression Model

- Poisson GLM: log $Y_{ij} = \beta_0 + \beta_1 X_j + \log E_{ij}$
- Y_{ij}: Observed count for county *i* in year *j*
- X_j: Year j
- *E_{ij}*: Expected count for county *i* in year *j*

Moran's I Statistic

$$I = rac{n}{S_0} rac{{\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^n {W_{ij}(x_i - ar{x})(x_j - ar{x})} } }}{{\sum\limits_{i = 1}^n (x_i - ar{x})^2 }}$$

- *n*: number of regions (99 counties)
- W: adjacency matrix (W_{ij} = 1 if county i and county j share a border; W_{ii} = 0)

•
$$S_0 = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}$$

• x: outcome variable (observed clubfoot cases per county)

Moran's I Test

- *H*₀: Observed counts are randomly distributed across counties; i.e. no spatial clustering of observed counts
- H_a: Observed counts are not randomly distributed

Moran's I Test

- *H*₀: Observed counts are randomly distributed across counties; i.e. no spatial clustering of observed counts
- H_a: Observed counts are not randomly distributed
- Expected Moran's I under H_0 : $E(I) = \frac{-1}{n-1} = -0.010$
- Calculated Moran's I: 0.091; *p*-value = 0.013

Moran's I Test

- *H*₀: Observed counts are randomly distributed across counties; i.e. no spatial clustering of observed counts
- H_a: Observed counts are not randomly distributed
- Expected Moran's I under H_0 : $E(I) = \frac{-1}{n-1} = -0.010$
- Calculated Moran's I: 0.091; p-value = 0.013
- Conclusion: There is spatial clustering at 5% significance level

CAR Prior for Spatial Random Effect

$$\phi \sim N(0, [\tau D - \alpha W]^{-1})$$

- D = diag(m_i) (n × n diagonal matrix with m_i = number of neighbors of county i)
- W: adjacency matrix (W_{ij} = 1 if county i and county j share a border; W_{ii} = 0)
- α : binary spatial dependence parameter
- $au \sim \mathsf{Gamma}(2,2)$
- Bayesian approach implemented using rstan package in R

Poisson Model with Spatial Error Factor

- log $Y_i = \beta X_i + \phi_i + \log E_i$
- $X_i = 1 \ \forall \ i$ (no other covariates included)

Siri Neerchal

University of Maryland

Relative Risk by County (Spatially Smoothed)

Siri Neerchal

University of Marylanc

Conclusions

- Prevalence relatively constant over 20-year time period
- Potential risk factors:
 - Maternal smoking, increased BMI, hypertension
 - Multiple birth, preterm birth
 - Lower socioeconomic status
- Possible hotspots:
 - Keokuk County
 - Delaware County
 - Van Buren County

Acknowledgements

- Jake Oleson
- Paul Romitti
- Anthony Rhoads & Florence Foo
- Gideon Zamba
- Grant Brown
- Monica Ahrens & Javi Flores (and many other graduate students)
- Department of Biostatistics
- ISIB 2018 Cohort (special thanks to Isaac Slagel)
- NHLBI (Grant #HL131467)

References

Joseph, Max. "Exact Sparse CAR Models in Stan." August 20, 2016. http://mc-stan.org/users/documentation/casestudies/mbjoseph-CARStan.html. Kancherla V, Romitti PA, Caspers KM, Puzhankara S, Morcuende JA. 2010. Epidemiology of congenital idiopathic talipes equinovarus in Iowa, 1997–2005. Am J Med Genet Part A

152A:1695–1700.

Werler MM, Yazdy MM, Mitchell AA, et al. Descriptive Epidemiology of Idiopathic Clubfoot. American journal of medical genetics Part A. 2013;161(7):1569-1578.