Modeling Optimal Treatment Decisions for Large Vessel Occlusion in Acute Stroke Patients

Faculty Mentor: Dr. Grant Brown

Scholars: Grace Gerdts (University of Iowa), Micah Marshall (University of Hawaii), & Sarah Maebius (Reed College)

Outline

 \circ Introduction

- \circ Research Question
- \odot Prior Research

 \circ Data

\circ Methods

- Bayesian Statistics
- \circ Logistic Regression Model
- \circ Stan Model

 $\odot\, \mbox{Completed}$ Work So Far

- \circ One-Dimensional Model
- \odot Two-Dimensional Model
- \circ Full State Model

 \circ Future Work

Research Question

- Patients suffering from large vessel occlusion (LVO) in acute stroke have two treatment courses available
 - TPA; Receive medication at local hospital, transfer to EVT center for surgery
 - EVT; transfer straight to EVT center for surgery
- Time sensitive decisions must be made in the field by EMTs
- Based on the distance from the LVO event to the closest TPA & EVT hospitals, which hospital and treatment plan will result in the best outcome for the patient?

Hospitals in Iowa

Prior Research

- \circ Two prior studies:
 - Modeling Stroke Patient Transport for All Patients With Suspected Large-Vessel Occlusion

 Dr. Jessalyn Holodinsky
 Association Between Time to
 - Treatment With Endovascular Reperfusion Therapy and Outcomes in Patients With Acute Ischemic Stroke Treated in Clinical Practice
 - \circ Dr. Reza Jehan

Holodinsky et al., 2018

Data

 $\odot Simulated data for 600 patients across lowa$

 \circ Variables

 \odot Onset to treatment time (OTT) in minutes

 \odot Transfer time from TPA hospital to EVT hospital in minutes

 \odot Indicator variables to identify whether patient received

 $\,\circ\,$ TPA then transfer to EVT

 $\circ\,$ EVT directly

 \circ "Excellent" Outcome

Bayesian Statistics

Likelihood function

 Y ~ Bernoulli(π)

 Prior distribution

 βi ~ normal(0,10)

 Posterior distribution

 rstan package in R

$$\underbrace{P(A|B)}_{\text{Posterior}} = \frac{\overbrace{P(B|A)}^{\text{Likelihood}} \cdot \overbrace{P(A)}^{\text{Prior}}}{P(B)}$$

Logistic Regression Model

$\eta = \beta_0 + \beta_1 EVT + \beta_2 EVT * OTT + \beta_3 TPA * OTT + \beta_4 TPA * TransferTime$

$$\pi = \frac{e^{\eta}}{1 + e^{\eta}}$$

Stan Model

```
14
   data{
15
     int Nobs; // Number of observations
     int<lower=0> Y[Nobs]; // Vector of binary outcomes - 1 is excellent outcome
16
     real<lower=0> ott[Nobs]; // Vector of onset to treatment times
17
     real<lower=0> transfertime[Nobs]; // Vector of transfer times
18
19
     int<lower=0, upper=1> EVT[Nobs]; // Indicator for EVT
20
     int<lower=0, upper=1> TPA[Nobs]; // Indicator for TPA
21 }
22
   parameters{
23
    real beta0; // Intercept
24
    real beta1; // Main effect: EVT
25
    real beta2; // Onset To Treatment effect for EVT
26
     real beta3; // OTT effect for TPA
27
     real beta4; // transfer time effect for TPA -> EVT
28 }
29
  transformed parameters{
     real eta[Nobs];
30
31
    for (i in 1:Nobs) {
       eta[i] = beta0 + beta1*EVT[i] + beta2*EVT[i]*ott[i] + beta3*TPA[i]*ott[i] + beta4*TPA[i]*transfertime[i];
32
33
     }
34
35 model {
    // Vague prior distributions for the coefficients
36
37
    beta0 ~ normal(0,10);
38
     beta1 ~ normal(0,10);
39
     beta2 ~ normal(0,10);
40
     beta3 ~ normal(0,10);
41
     beta4 ~ normal(0,10);
     // Likelihood - bernouli
42
43
     for (i in 1:Nobs) {
44
      Y[i] ~ binomial_logit(1, eta[i]);
45
      }
46
```


One-Dimensional Distance Model

Outcome results dependent on distance from hospitals

 $P(Excellent \ Outcome) = \beta_0 + \beta_1 distance_TPA$ $P(Excellent \ Outcome) = \beta_0 + \beta_1 distance_EVT$

Two-Dimensional Distance Model

 $\begin{array}{l} P(Excellent \ Outcome) = \ \beta_0 + \ \beta_1 euclidean_distance_TPA \\ P(Excellent \ Outcome) = \ \beta_0 + \ \beta_1 euclidean_distance_EVT \end{array}$

P(Excellent Outcome w / TPA then EVT) > P(Excellent Outcome w / EVT)

Full State Model

Optimal Treatments

Future Work

 \circ Incorporating real data

 $\odot \textsc{Expanding}$ the model

- \odot Detecting large vessel occlusion
- \odot Patient demographics
- \circ Travel time
- \odot Treatment delays

 $\odot \mbox{App}$ development for EMT use

Acknowledgements

 Iowa Summer Institute of Biostatistics is sponsored by the National Heart Lung and Blood Institute (NHLBI), grant # HL-147231.

Questions?