Machine Learning and Extrapolation: Predicting University of Iowa Student Enrollment

Sarah Coleman (Concordia University Chicago) & Noah Johnson (Gustavus Adolphus College)

Faculty Mentor: Dr. Grant Brown

Outline

Project Purpose

- The purpose of this project was to use classification machine learning models on enrollment data to predict whether an admitted student would enroll or not.
- This is important because every year there is a large pool of applicants and only a small subset ends up enrolling.
- Our goal was to see if we could create a model that could make accurate predictions

The Data

- The data was collected weekly from 2016 to 2021
- For each student applying, there were around 400 variables to describe them
- There was a lot of missing data
- With so much data we needed a new approach

Variables

Categorical

- Parents' Higher Education
- Foreign Language in HS
- Athlete Status
- Number of Youth Programs
- Administration Decision Type
- Application Source
- State Proxy
- Family Alumni
- Area of study

Numerical

- Distance to Campus
- ACT Composite Score
- HS GPA
- Number of Applications
- Days since first Inquiry
- Awards & Scholarships

Number of Students Admitted And Enrolled

Julia Strengths

One of the faster computational languages Easy to reproduce results (Juptyer Notebooks)

Open Source

(17355, 190)(16552, 190)

Info: Training Machine{ProbabilisticTunedModel{Grid,...},...} @468.

- L @ MLJBase C:\Users\noahj\.julia\packages\MLJBase\diSrF\src\machines.jl:354
- [Info: Attempting to evaluate 100 models.

L @ MLJTuning C:\Users\noahj\.julia\packages\MLJTuning\Uj5Cx\src\tuned_models.jl:602
Evaluating over 40 metamodels: 100%[=============] Time: 0:28:15

[Info: Only 40 (of 100) models evaluated.

Model supply exhausted.

L @ MLJTuning C:\Users\noahj\.julia\packages\MLJTuning\Uj5Cx\src\tuned_models.jl:529

[Info: Training Machine{ProbabilisticTunedModel{Grid,...},...} @476.

L @ MLJBase C:\Users\noahj\.julia\packages\MLJBase\diSrF\src\machines.jl:354

 $_{\mbox{\scriptsize \Gamma}}$ Info: Attempting to evaluate 100 models.

L @ MLJTuning C:\Users\noahj\.julia\packages\MLJTuning\Uj5Cx\src\tuned_models.jl:602
Evaluating over 10 metamodels: 20%[====>] ETA: 2:44:38

- It can be slow at times because of the computation
- Took time to learn
- Tough to correct errors

Models --Overview

- Classification
 - Training Data
 - Test Data
- GLMNet LASSO
- Cross validation
- MLJ DecisionTrees.jl
 - XGBoost
 - RandomForest
 - AdaBoostStumpClassifier
- Extrapolation

	Parameter	Estimate
	String	Float64
1	(Intercept)	0.0
2	Max_HS_FOUR_PT_GPA	-0.114389
3	Max_HS_FOUR_PT_GPA_missing	-0.101962
4	ACT_COMPOSITE	-0.00523698
5	ACT_COMPOSITE_missing	-0.144446
6	ADMN_DECISION_TYPE_EN: DEFERRED	-1.88605
7	ADMN_DECISION_TYPE_EN: NO_DECISION	-1.23244
8	StateProxy: IOWA	2.04616
9	StateProxy: NA	-2.20916
0	StateProxy: NATIONAL	-0.21616
1	StateProxy: OTHER	0.347326

	Sensitivity	Specificity
	Float64	Float64
1	0.567662	0.873549

Into an example LASSO

Model output

	Sensitivity	Specificity	
	Float64	Float64	
1	0.567662	0.873549	

observed	prediction	fitted_value
		_

	Any	Int64	Float64
1	0	1	0.57137
2	0	1	0.602332
3	0	0	0.144293
4	1	1	0.539983
5	0	0	0.133821
6	1	1	0.551146
7	0	1	0.569109
8	0	1	0.601627
9	1	1	0.569078
10	0	1	0.590242

Machine Learning Coding Patterns

GLMNet Code

tion get_glmnet_cv_results(X,y,K)
Assign every observation to a CV fold randomly
<pre>fold_indices = [(i % K)+1 for i in randperm(size(y)[1])]</pre>
Create a vector to store the prediction probability
pred_prob = zeros(Float64, size(y)[1])
Create a vector to keep track of the lambdas which are used
lambdas = zeros(Float64, K)
Iterate over the folds
for fold_idx in 1:K
Identify test and traning data
X_test = X[findall(fold_indices .== fold_idx),:]
X_train = X[findall(fold_indices .!= fold_idx),:]
Y_test = y[findall(fold_indices .== fold_idx)]
Y_train = y[findall(fold_indices .!= fold_idx)]
Within the trainin data, find the optimal lambda
value with an additional round of cross validation
cv = glmnetcv(X_train, Y_train)
best_lambda = cv.lambda[argmin(cv.meanloss)]
lambdas[fold_idx] = best_lambda
Fit the model at the chosen lambda value
fit = glmnet(X_train, Y_train,lambda = [best_lambda])
Make a prediction for the test data
<pre>probs = GLMNet.predict(fit, X_test,outtype = :prob)</pre>
<pre>pred_prob[findall(fold_indices .== fold_idx)] = probs</pre>
end

Fit a final model for extrapolation

XGBoost Classifier – Pipeline Approach

Function to read in, process, and analyze data bst = @load XGBoostClassifier

function run_xgboost_analysis(fname_train, fname_test; manual_variable_drops = [], K=10)
Read in training and test/extrapolation data sets.
training_data = getAnalyticData_v2(fname_train,manual_variable_drops)
test data = getAnalyticData v2(fname test,manual variable_drops)

In case the variables have changed, make sure to keep only the intersection names_train = training_data["coefnames"]

names_test = test_data["coefnames"]

train_keep_vars = findall([x in intersect(names_train, names_test) for x in names_train] .> 0) test_keep_vars = findall([x in intersect(names_train, names_test) for x in names_test] .> 0)

MM_train = training_data["model_matrix"][:, train_keep_vars]
MM_test = test_data["model_matrix"][:, test_keep_vars]

Update columnames

names_train = names_train[train_keep_vars]
names_test = names_test[test_keep_vars]

Check if any variables have zero variability and need to be excluded, skipping intercept
zerovar_train = findall([var(MM_train[:,x + 1]) < 1e-12 for x in 1:(size(MM_train)[2] - 1)] .> 0) .+ 1
zerovar_test = findall([var(MM_test[:,x + 1]) < 1e-12 for x in 1:(size(MM_test)[2] - 1)] .> 0) .+1
zerovar_either = union(zerovar_train, zerovar_test)

both_keep_vars = setdiff(1:(size(MM_train)[2]), zerovar_either)
MM_train = MM_train[:,both_keep_vars]
MM_test = MM_test[:,both_keep_vars]
Update columnames
names_train = names_train[both_keep_vars]
names_test = names_test[both_keep_vars]

print(size(MM_train))
print(size(MM_test))

Triple check that everything is lined up if (!all(names train .== names test))

error("Columns don't match after initial variable exclusion: \n "*fname_test*"\n "*fname_train) end

Set up pipeline. OneHot not needed, data is already processed

xgbpipe = @pipeline(bst())

Hyperparameter tuning range

ranges = [range(xgbpipe, :(xg_boost_classifier.max_depth), lower = 1, upper = 4), range(xgbpipe, :(xg_boost_classifier.eta), lower = 0.01, upper = 0.5, scale = :log)] xgbpipe.xg boost classifier.num round = 500

xgbpipe.xg_boost_classifier.subsample = 0.8

xgbpipe.xg_boost_classifier.colsample_bytree = 0.25

fit!(m, rows= 1:(size(MM_train)[1]))
#fitted_params(m).best_model
#evaluate!(m,resampling=CV(nfolds=5),measure=[LogLoss()], verbosity=1)
fits_extrapolate = MLJ.predict(m, MLJ.table(MM_test[:,2:(size(MM_test)[2])]))
preds_extrapolate = [1*(pdf(x, 1) >= 0.5) for x in fits_extrapolate]

Dict("summary" => get_pred_perf(test_data["outcome"] .* 1, preds_extrapolate, "XGBoost Model Extrapolation"),
 "model" => m,
 "training_data" => training_data,
 "test data" => test data)

Extrapolation Comparison for one date

Model	Accuracy	Sensitivity	Specificity
GLMNet (LASSO)	0.9346	0.7107	0.9272
XGBoost	0.9245	0.6661	0.9437
RandomForest	0.9098	0.6011	0.9607
AdaBoostStumpClassifier	0.9051	0.5803	0.9612

Conclusion

- Predicting enrollment with dynamic data
- Using GLMNet and MLJ provided through Julia
- Comparison of models

Future Explorations

- Calculate random forests and Ada Boost Stump Classifier over all dates
 - Too computationally intensive with what we have
- Other Models

Acknowledgments

• ISIB Program sponsored by the National Heart Lung and Blood Institute (NHLBI), grant # HL-147231.

http://www.nhlbi.nih.gov/about/org/logos

Questions?