Eedicting Renal Failure in
Patients with C3 Glomerulopathy

ISIB 2022
Bethany Astor, Delaney Underwood, and Alan Wang

Patrick Breheny, PhD and Logan Harris, MS



Kidney Disease

e Progressive disease in which the o
kidneys lose their ability to properly cotea
filter waste and excess fluids from the ”
blood

e Glomerulus-filtering unit of the kidney

= Glomerular filtration rate (GFR) is a
measure of kidney function

ol Scar tissue

] Damaged
glomerulus

Damaged
tubules

Diseased
kidney

e Current treatment option
m Kidney Transplant

https://www.mayoclinic.org/diseases-conditions/chronic-kidney-disease/symptoms-

causes/syc-20354521.
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https://www.mayoclinic.org/diseases-conditions/chronic-kidney-disease/symptoms-causes/syc-20354521

C3 Glomerulopathy (C3G)

e A form of kidney disease in which an abundance of the
protein C3 is present in the glomerular capillaries

e 1in 1,000,000 people have C3G

e Sub-types of C3G

m Dense Deposit Disease (DDD)
m C3 Glomerulonephritis (C3GN)
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Purpose

e About half of patients with C3G have end-stage renal
disease (ESRD) within 10 years

e Improve predictions of future renal failure using various

biomarkers
5 Stages Of Kidney Disease

e GFRvs. eGFR | seses |
GFR=90 89=GFR=60 59=GFR=40 | 44=GFR=30 29=GFR=15 GFR<15
e Capping eGFR ’ ’
measurements j'
N I or high Mildly decreased Mild to moderatel Severel : .
or?aicggnug | fyunction decreased functiozlw decreased fu¥lction Hidney failure

http://www.renalcareconsult.com/renal-disease-education/stages-of-kidney-disease/

B 10WA



The Data - Ul C3G Natural History Study

Observations

e |Initially 1935 observations from

208 individuals

e Predictions made from 467

observations from 109 individuals

Measurements

eGFR

C3

UPCR

UACR

Soluble C5b-9 level
Chronic Kidney Disease stage
Sex

Etiology

Years with disease
Age at Biopsy
Race/Ethnicity
Transplant Status
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Three Models

1. Baseline
2. Years with disease

3. Incorporating biomarkers
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1. Baseline Prediction

Baseline Prediction
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2. Years with Disease
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3. Biomarkers

* eGFR
 Years with disease

* Urine Protein-Creatinine Ratio (UPCR)
* Soluble C5b-9 level
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120

Methods 00

* Linear Models

* Generalised Additive LN S
Models(GAMs) 0 2 4 6 8 10 12 14

— Goal: extend linear-
regression models to be
more flexible while
avoiding overfitting the
data

| |
12 14

I I0OWA




Generalised Additive Models (GAMSs)

e GAM: a sum of smooth functions

y; = Bo + z si(zs) + €
J

e Splines: functions made of simpler functions, b,
each with weight Br -

s(z) =) Brbi(z)
k=1

Equations from: Simpson, Gavin, ‘Generalised Additive Models (GAMs)' for the ‘Statistical Methods’ webinar series hosted by
the Ecological Forecasting Initiative and the ESA Statistical Ecology Section. Given on January 3, 2022. bit.ly/gam-efi-22.
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https://fromthebottomoftheheap.net/slides/gams-webinar-efi-esa-2022/gams.html#3
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Animation from: Simpson, Gavin, ‘Generalised Additive Models (GAMs)’ for the ‘Statistical Methods’ webinar series hosted by the
Ecological Forecasting Initiative and the ESA Statistical Ecology Section. Given on January 3, 2022. bit.ly/gam-efi-22.
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https://fromthebottomoftheheap.net/slides/gams-webinar-efi-esa-2022/gams.html#3

Final Model

fit <- gam(eGFR2_cap ~ eGFR2_12méw_cap +
TogUPCR_12méw +
s(soluble_Tlevel, sp=0.07) +

eGFR s(YrsDisease), log(UPCR)

coefficient = 0.95971 data=c3g) coefficient = -2.486
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Final Model

soluble level

years with disease
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Final Model - Patient Trajectory
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Model Accuracy

e Adjusted R-squared:
m Adjusted R-squared for baseline prediction = 0.879
m Adjusted R-squared for years prediction = 0.879
m Adjusted R-squared for our model = 0.89

e Cross Validation:

m Generalised Cross Validation
e GCV for baseline prediction = 230.08
e GCV for years prediction = 230
e GCV for our model =212.01

m Training and testing splits
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Limitations

e Some observations come from the same individual
multiple times

e Not taking into account dependence
e Have missing data
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