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Whatis
Clostridioides
cifficile (C. difficile)?
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What is C. difficile?

e A bacterium that causes infection in the large | Y LA
intestine. Lodeg " 5

A )

oy _ (/7% "!- /&. ‘ '
e One of the most common healthcare facility- |

acquired infections.

e Symptoms: diarrhea to life-threatening colitis.

® Transmission occurs by the fecal-oral route.

e Spores could persist in the environment for o
long time.

e Asymptomatic patients could still spread the
infection.

Y «

https://www.health.harvard.edu/blog/stool-
transplants-are-now-standard-of-care-for-
recurrent-c-difficile-infections-2019050916576
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What is C. difficile?

e Risk factors:

o Presence of other CDI
patients in the hospital

o Use of antibiotics

© Old age

o Longer hospital stays

o Comorbidities

© Exposure to agents that
reduce levels of gastric acid

https://therivernewsroom.com/coronavirus-
roundup-state-shifts-data-focus-
hospitalizations-4000/
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OBJECTIVE

e To determine if individuals that experience
healthcare facility-onset C. difficile infections
(HCFO-CDIs) are contributing to the spread of
community-onset C. difficile infections (CO-
CDIs).



STUDY DESIGN

Data cleanup

Create a real-world emulator to predict CO-CDI
cases

Create a simulation that predicts state counties
and their neighboring counties CO-CDI cases
based on previous months



INTERVENTION

e Made a counterfactual scenario of
negating the effect of HCFO-CDIs on DATA

community spread.
e Manage to predict the CO-CDI cases

If the detrimental effect of HCFO-CDIs
was eliminated.
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DATA

e State Inpatient Database from

the Healthcare Cost

and

Utilization Project (HCUP SID)
e Over 20 million hospital

iInpatient visits from six U.S.
states (VT, NC, AZ AR, UT, IA)

from 2003 to 2015

e Census data

e County adjacency s
data to predict loca

Natial

spread



HCFO-CDI = 16407/ cases
CO-CDI =14679 cases

Patients admitted with
more than 1 diagnosis

days since last

hospitalization is within e ey  NRe
SE e than 3 days

\y NO J YES

YES




Temporal

PAST PRESENT FUTURE

Muscahne ; . . . Muscatine
L _:I. 1 : - _I_'

LOUIsa Y, i Louiza




Temporal

PAST

PRESENT

Buchanan Delaware

| Dubuy

= e T T

ma | Benton | Ty

FMuscatine

LoLlisa 5,

FUTURE

11



Spatial

PAST PRESENT

B uchanan)

| Earton Lirn : | Earton Lirn

12




Spatial

PAST PRESENT

13
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RANDOM FOREST

Modification of bagging
Builds numerous de-
correlated regression

frees

to predict an

outcome

Split

data set into ‘train’

(80%) and "test” (20%)
Use the training data to

builo

the random forest

and

oredict the test data

DECISION TREE-1 DECISION TREE-1 DECISION TREE-1

RESULT-1 RESULT-2 RESULT-N

LP MAJORITY VOTING / AVERAGING <_|
FINAL RESULT

https://www.tibco.com/reference-center/what-is-a-random-forest 1 6



RANDOM FOREST

* Predictor variables: ®* Response variable:
o Yeqr o CO-CDils
o State

o Sedsonality

o Population 65 and older

o Population under 65

o HCFO-CDlIs

© HCFO-CDIs from the month prior

© HCFO-CDIs In neighboring counties
o CO-CDlIs from the month prior

© CO-CDls in neighboring counties
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Random Forest MSE Values

Nodesize

5 10 15
RAN Do M 2.364351 2.412077 2.424765
Fo R E S I 2.136656 2.137867 2.200545

2.113935 2.097265 2.129924

e Tried several combinations of

2.117038 2.104251 2.084148

random forest tuning

parameters
e Calculated the lower mean

squared error (MSE) value. * mplementing Random Forest
e Use result for final fit: without HCFO variables:

o Mean of squared © Mean of squared residuals:
residuals: 2.214183 2.310033

o %Var explained: 92.88 © % Var explained: 92.57



Important Variables for Validation
Predictions

RESULTS: O
ASSESSING - :

HCFO_count o)

CO-CDI :

CO_t_minus_1 o

PREDICTORS o ;

under6s ©

hcfo_nb o
stateut o

statevt o

statear O

stateaz o

seasonality cos O

seasonality_sin o

| ! ! l | !
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%IncMSE 1 9



SIMULATIONS

e Using the final fit from the
random forest, we predict the
CO-CDI cases in future months.

e We took into consideration the
fips region, county adjacency,
and the present and future
month and year variables.




INTERVENTION

e Made a counterfactual scenario of
negating the effect of HCFO-CDIs on DATA

community spread.
e Manage to predict the CO-CDI cases

If the detrimental effect of HCFO-CDIs
Wwas eliminated.

INTERVENTION 24




RESULTS: ASSESSING THE
PREDICTION OF CO-CDIS

Validation Predictions Counterfactual Predictions
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© ©
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| | | |
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True CO-CDI counts True CO-CDI counts
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GRAPH: TOTAL ANNUAL
PREDICTIONS




Annual True, Validation Predicted, and Counterfactual Predicted CO-CDI Counts
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Comparison
between true

counts and
simulations

with and
without
iINntervention

= True CO-CDls
— Validation Predicted CO-CDls
—— Predicted CO-CDls w/o HCFO-CDIls
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CONCLUSION

* More error Iin predictions omitting the
HCFO variables.

* The year, number of CO-CDIs Iin
surrounding counties, numiber of CDIS
from the previous month, patient's
age, and HCFO count are the most
significant predictors of the number
of CO-CDIs

o Without HCFO-CDls, there would be o
decrease in the CO-CDI cases
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LIMITATIONS

e The database was
composed of only 6
states.

e CDI cases that don't lead
to hospitalization are not
captured in the data.

e With claims data, we do
not know the diagnostic
errors involved In
diagnosing CDI.
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LIMITATIONS

e Could only compute the
number of positive CDI
tests.

e Obtained a point, rather
than an interval,
estimate.

e TOOkK Into consideration

Point Estimate

patients who were
— - admitted to hospitals in
the state in which they
reside.
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What's next?

e Get interval estimates from our point estimate

oredictions

e Implement the use of a Foisson distribution

® Determine another way to analyze the dato

e Expand the investigation to other states and 'I?P
years ‘

* |nvestigate CO-CDIs and socioeconomic status
based on FIPS region
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