
Predicting Time Until Renal Failure for Newly Diagnosed C3G Patients

Ashley Birnesser, Zoe Chafouleas, and Bryan Salcedo

Dr. Patrick Breheny Graduate Assistant Logan Harris

Complement-3-Glomerulopathy (C3G)

What is it?

Group of related rare conditions that cause kidney damage

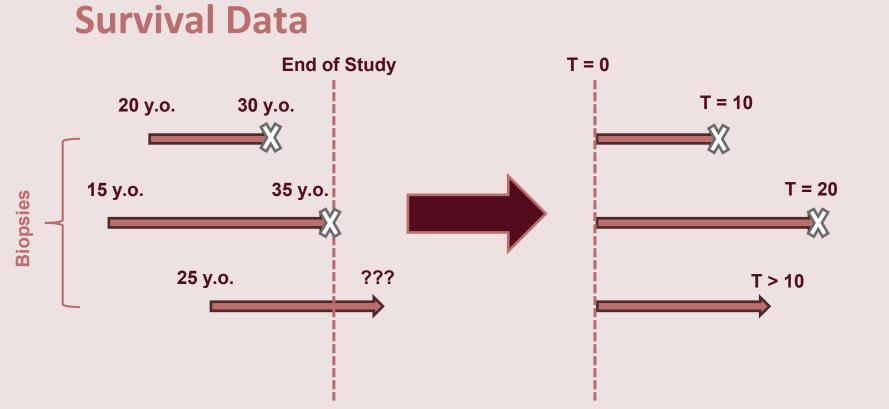
Abnormal breakdown of C3 protein \rightarrow buildup of waste products in kidneys \rightarrow inflammatory response \rightarrow reduced kidney function over time

Progresses to End-Stage Renal Disease (ESRD)
Dialysis or kidney transplant necessary for patient survival at this point
Study follows cohort of C3G patients after initial diagnosis

Research question:

Can we predict when a C3G patient will reach ESRD using measures of kidney function at the time of initial diagnosis?

Measuring ESRD with GFR


- Glomerular filtration rate (GFR)
- Rate at which blood is filtered by the kidneys per minute
- **G** Estimated based on amounts of waste substances in the blood
- Used in our model to signify when patient has reached ESRD

Predicting Kidney Failure

Variable	Role
Creatinine	Protein waste products from normal bodily functions
Urine protein creatinine ratio (UPCR)	Ratio of proteinuria to creatinine in urine
Age of biopsy	Age when kidney biopsy was taken for C3G diagnosis
K+	Electrolyte that regulates a variety of bodily functions

Survival Data

Paired Data (Survival Objects):

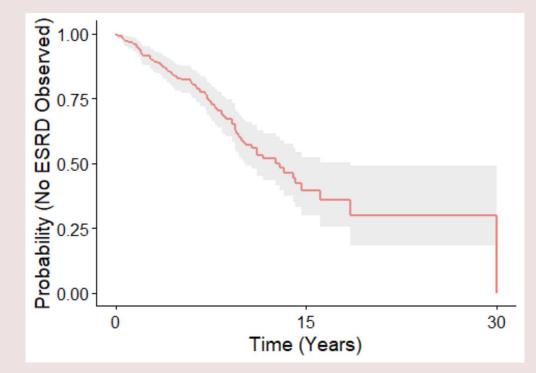
(Time, Event)

Time in Study:

- 1. Progressed to ESRD
- 2. No observed progression to ESRD/ Patient Censored

Binary ESRD Outcome

- 1. ESRD (1)
- 2. No observed progression to ESRD (0)

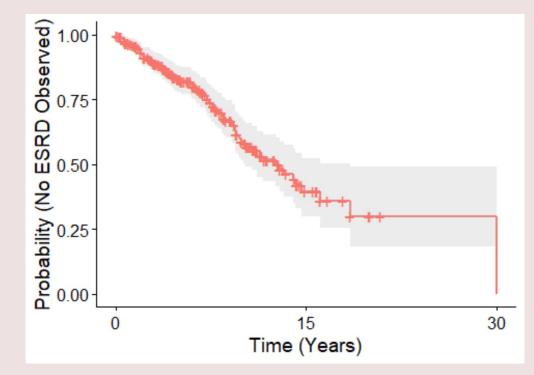

Methods: Kaplan-Meier Curves

G d(t): # events at time t

- n(t): # patients at risk at time t
- **G** S(t): survival probability at time t

Equation:

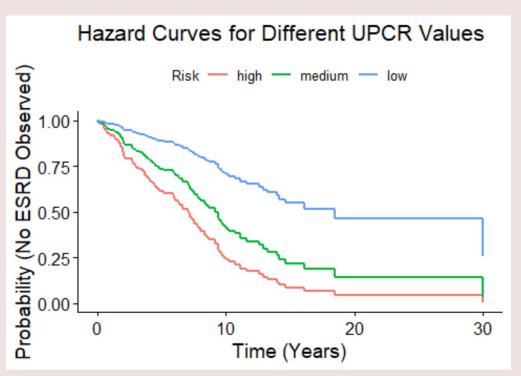
$$S(t) = S(t_{-1}) \times \frac{n(t) - d(t)}{n(t)}$$


Methods: Kaplan-Meier Curves

G d(t): # events at time t

- n(t): # patients at risk at time t
- **G** S(t): survival probability at time t

Equation:


$$S(t) = S(t_{-1}) \times \frac{n(t) - d(t)}{n(t)}$$

Methods: Cox Proportional Hazards

 $h_i(t) = h_0(t) \times e^{\sum \beta_j x_{ji}}$

- i: denotes patient i
- $h_0(t)$: baseline hazard
- β_i : coefficients
- x_i : explanatory variables

Models: Cox Proportional Hazards

 \sum

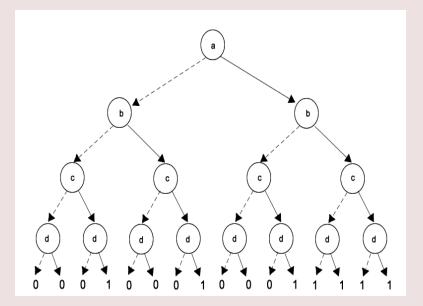
Significant Variables

Variable	Coefficient	Hazard Ratio	
Age of Biopsy	0.016	1.016	
Log(UPCR)	0.366	1.441	2
Potassium (K+)	0.527	1.694	
GFR	-0.008	0.992	
Creatinine	0.441	1.554	

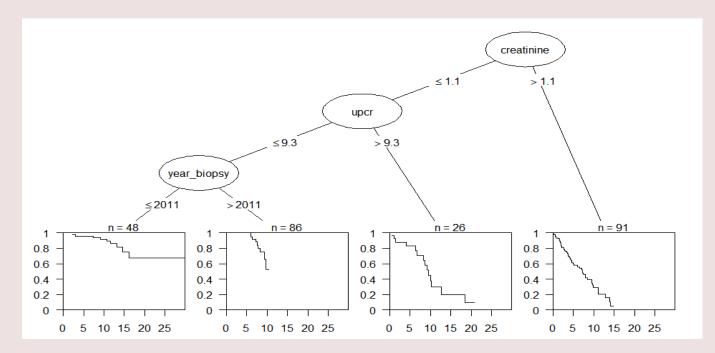
Equation

$$h_i(t) = h_0(t) \times e^{\sum \beta_j x_{ji}}$$

$$\beta_i x_i = 0.016 age + 0.366 log(upcr) + 0.527 - 0.008 kgfr + 0.441 cre$$

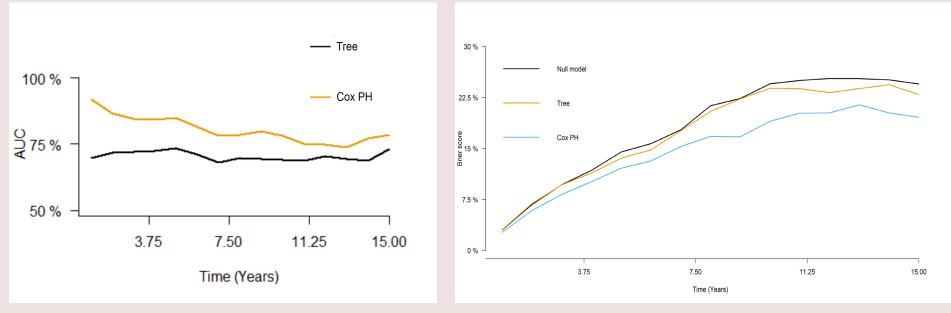

Survival Probability Calculator

Methods: Tree-Based Models


G What is a tree-based predictive model?

How does it work?

- Recursive partitioning
- Impurity measures


Models: Decision Tree

Model Validation

AUC

Limitations to Models

Cox Proportional Hazards

- Static Hazard Ratio Assumption
- Linearity Assumption

Trees

- Potential for Overfitting
- Instability

Future Directions

- **C** Explore targeted subsets of patients
- Improve usability of our apps for medical utilization
- Ongoing study will more closely examine specifics of patient GFR reduction per year

Acknowledgements

- ISIB Program sponsored by the National Heart Lung and Blood Institute (NHLBI), grant #HL161716-01
- Dr. Patrick Breheny, Professor, Department of Biostatistics, University of Iowa
- Logan Harris, Graduate Student Mentor, Department of Biostatistics, University of Iowa
- Dr. Carla Nester, MD and Dr. Richard Smith, MD

National Heart, Lung, and Blood Institute

Sources

Heiderscheit, A. K., Hauer, J. J., & Smith, R. J. H. (2022). C3 glomerulopathy: Understanding an ultra-rare complement-mediated renal disease. *American Journal of Medical Genetics Part C: Seminars in Medical Genetics*, 190C: 344–357. https://doi.org/10.1002/ajmg.c.31986

Kirpalani A, Jawa N, Smoyer WE, Licht C; Midwest Pediatric Nephrology Consortium. Long-Term Outcomes of C3 Glomerulopathy and Immune-Complex Membranoproliferative Glomerulonephritis in Children. Kidney Int Rep. 2020 Oct 3;5(12):2313-2324. doi: 10.1016/j.ekir.2020.09.019. PMID: 33305125; PMCID: PMC7710848.

Nester, Carla M.^{a,c}; Smith, Richard J.^{a,b,c}. Treatment options for C3 glomerulopathy. Current Opinion in Nephrology and Hypertension 22(2):p 231-237, March 2013. | DOI: 10.1097/MNH.0b013e32835da24c

Images

https://onlinelibrary.wiley.com/doi/full/10.1002/ajmg.c.31986 https://lifeoptions.org/learn-about-kidney-disease/causes-and-stages/ https://www.vectorstock.com/royalty-free-vector/kidney-in-human-body-vector-9716317 https://www.creative-biolabs.com/complement-therapeutics/c3-glomerulopathy.htm https://www.public-health.uiowa.edu/cph-identity-standards/ https://med.stanford.edu/seanwulab/news-archive/news-archive-2017.html

Questions?

