Predictive Modeling for Body Fat Percentage Based on Anthropometric Measures

Samuel Ingram (Arizona State Univ.) Matira Schwab (College of William and Mary) Nadine Zayyad (California State Univ. Channel Islands)

Mentor: Dr. Joseph Cavanaugh Iowa Summer Institute in Biostatistics (ISIB)

Motivation

- Elevated body fat increases the risk associated with many common, chronic health conditions linked to premature, preventable death
- Excess body fat increases the amount of work for the heart (Wong, 2021)
 - Raises blood pressure and cholesterol and triglyceride levels
 - Lowers HDL cholesterol levels
- An individual with a waist circumference of more than 88cm (35 inches) in women and more than 102cm (40 inches) in men has abdominal obesity. (Heianza, 2019)
- The Dual Energy X-ray Absorptiometry (DEXA) scan is the gold standard for accurately measuring the percentage of body fat
 - Measures muscle mass, fat mass, bone density, visceral fat
 - Procedure is expensive and not widely accessible
 - The need exists for more convenient methods to assess body fat percentage

Body Mass Index (BMI)

- Created in the 1800s by Albert Quetelet
- Not designed for health care
- Used by Metropolitan Life to build actuarial tables for life insurance
- Does not measure fat directly
- Does not differentiate weight from fat and muscle
- Muscle is 18% more dense than fat

(Blackburn, 2014)

$$\mathbf{BMI} = \frac{\text{weight in } kg}{(\text{height in } m)^2}$$

Interpreting BMI in Adults 20 and Older

BMI	Weight Status
Below 18.5	Underweight
18.5 - 24.9	Normal/Healthy Weight
25 - 29.9	Overweight
30 and above	Obese

Body Mass Index (BMI) Table for Adults

		i an														mete								
	GHT				4'11*			5'2"												6'2*		6'4"		
	(kg)	142cm		147				157	100						175							193		
	(117.9)	58	56	54	53	51	49	48	46	45	43	42	41	40	38	37	36	35	34	33	32		31	
	(115.7)	57	55	53	51	50	48	47	45	44	42	41	40	39	38	37	36	35	34	33	32	31		
	(113.4)	56	54	52	50	49	47	46	44	43	42	40	39	38	37	36	35	34	33	32	31	30		
	(111.1)	55	53	51	49	48	46	45	43	42	41	40	38	37	36	35	34	33	32	31	31	30	29	
	(108.9)	54	52	50	48	47	45	44	43	41	40	39	38	36	35	34	33	33	32	31	30	29	28	
	(106.6)	53	51	49	47	46	44	43	42	40	39	38	37	36	35	34	33	32	31	30	29	29	28	
	(104.3)	52	50	48	46	45	43	42	41	39	38	37	36	35	34	33	32	31	30	30	29	28		
	(102.1)	50	49	47	45	44	43	41	40	39	37	36	35	-34	33	32	31	31	30	29	28	27	27	
		49	48	46	44	43	42	40	39	38	37	36	34	33	32		31	30	29	28	27	27		
	(97.5)	48	47	45	43	42	41	39	38	37	36	35		33	32	31	30	29	28	28	27	26	25	
	(95.3)	47	45	44	42	41	40	38	37	36	35	34	33	32	31	30	29	28	28	27	26	26		
	(93.0)	46	44	43	41	40	39	37	36	35	34	33		31	30		29	28	27	26	26	25	24	
	(90.7)	45	43	42	40	39	38	37	35	34	33	32	31	30			28	27	26	26	25	24		
	(88.5)	44	42	41	39	38	37	36	35	33	32	31	31				27	26	26		24	24		
		43	41	40	38	37	36	35	34	33	32	31		29	28		26	26	25	24	24	23		
	(83.9)	41	40	39	37	36	35	34	33	32	31			28	27		26	25	24	24	23	23		
		40	39 38	38	30	35	34	33	32	31	30	29	28	27	27	26	25	24	24	23	22	22		
	(79.4)	39	30	31	35	33	33	32	31 30		29	28		27	26	25	24	24	23	22	22	21	21	
	(74.8)	38	36	30	33	32	31	30	29	29	28	27	27	26	25	24	24	23	22	22	21	21	20	
	(72.6)	36	35	33	32	31	30	29	28	20	27	26	25	24	24	23	22	22	21	21	20	19	19	
	(70.3)	35	34	32	31	30	29	28	27	27	26	25		24	23		22	21	20	20	19	19	18	
	(68.0)	34	32	24	30	29	28	27	27	26	25	24	23	23	22	22	21	20	20	19	19	18		
	(65.8)	33	31	30	29	28	27	27	26	25	24	23		22	21	21	20	20	19	19	18	18	17	
	(63.5)	31	30	29	28	27	26	26	25	24	23	23	22	21	21	20	20	19	18	18	17		17	
	(61.2)	30	29	28	27	26	26	25	24	23	22	22		21	20	19	19	18	18	17	17	16	16	
	(59.0)	29	28	27	26	25	25	24	23	22	22	21	20	20	19	19	18	18	17	17	16	16		
	(56.7)	28	27	26	25	24	24	23	22	21	21	20		19	18	18	17	17	16	16	16	15	15	
20	(54.4)	27	26	25	24	23	23	22	21	21	20	19	19	18	18	17	17	16	16	15	15	15	14	
	(52.2)	26	25	24	23	22	22	21	20	20	19	19		17		1.000	16	16	15	1000	14	14	7.05	
	(49.9)	25	24	23	22	21	21	20	19	19	18	18		17			15	15	15	14	14		13	
	(47.6)	24	23	22	21	21	20	19	19	18	17	17		16			15	14	14	13	13	13		
00	(45.4)	22	22	21	20	20	19	18	18	17	17	16		15		14	14	14	13	13	12		12	
95	(43.1)	21	21	20	19	19	18	17	17	16	16	15		14	14		13	13	13	12	12	12		
	(40.8)	20	19	19	18	18	17	16	16	15	15	15	14	14	13		13	12	12	12	11		11	
85	(38.6)	19	18	18	17	17	16	16	15		14	14		13			12	12	11		11			
80	(36.3)	18		17	16	16	15	15	14				13	12				11				10		Adult BMI Chart created by Vertex42.co
	MI values ro																						1.57	Used with permission.

Source: Rutgers Medicine

Objective

To create a linear regression model based on easily obtained anthropometric variables that can be conveniently used to predict body fat percentage

Outline

- Description of Data
- Regression Modeling Techniques and Principles
 - Akaike Information Criterion / R²
 - Bias / Variability Tradeoff
 - Best Subsets Regression
 - Multicollinearity
- Model Building / Results
- Model Validation / Results
- Summary / Conclusions

Description of Data

- Models are based on a data set comprised of 250 ۲ records on male participants
- Body fat percentage was accurately obtained using a • **DEXA** scan
- Data was collected at the BYU Human Performance **Research Center**
- Obtaining an accurate assessment of body ٠ fat percentage is difficult outside of a clinical setting

Name:	ne: 916-	734-6805	;	E-N	/lail: hs-spo	rtsper	formance@ucdavis.edu			
Patient DOB:	ID:						Sex: Female Ethnicity: White		eight: 168.2 cm 'eight: 54.6 kg ge:	
_							1	Fat Mass/Heigh	nt²	
Ima Fat	ges not for di	iagnostic use	Lean		Bone		Source: NHANES Classic V World Health Org:	Age White Female. anization Body Mass 3.3 WHO Classification I Overweight Obe	estry Obestry (
		ion Resu				_	Adipose Indices			
Region	Fat Mass (g)	Lean + BMC (g)	Total Mass (g)	% Fat	%Fat Percer YN	ntile AM	Measure	Result	Percenti YN	le AM
L Arm R Arm	580 607	2278 2561	2857 3168	20.3 19.2	4	2 2	Total Body % Fat	21.7	7	3
R Arm Trunk	607 4084	2561 19379	3168 23463	19.2 17.4	3 10	2 5	Fat Mass/Height ² (kg/m ²) Android/Gynoid Ratio	4.09 0.48	7	3
L Leg	2754	7305	10060	27.4	6	4	% Fat Trunk/% Fat Legs	0.48	23	13
R Leg	2844	6917	9761	29.1	9	6	Trunk/Limb Fat Mass Ratio	0.60	22	12
Subtotal	10869	38440	49309	22.0	7	3	Est. VAT Mass (g)	132		
	704	3240	3945	17.9			Est. VAT Volume (cm ³)	143		
Head	11574) 437	41680 2667	53254 3104	21.7 14.1	7	3	Est. VAT Area (cm ²)	27.4		
Total		6475	9193	29.6			Lean Indices			
) 2718						Measure	Result	Percenti	le
Total Android (/ Gynoid (G) 2718						Lean/Height ² (kg/m ²)	13.9	YN	AM 11
Total Android (4 Gynoid (G Scan Date: Scan Type:	Whole	Body					Lean/Height* (Kg/m*)	13.9	14	
Total Android (#	Whole	Body Whole Body					Appen. Lean/Height ² (kg/m ²)	6.34	32	31

Preliminary Descriptive Statistics

- 14 variables considered
 - 12 anthropometric measurements
 - age
 - BMI
- Most pairwise correlations between percent body fat and explanatory factors are moderate to high
- Waist circumference is strongly correlated with percent body fat
- Waist circumference appears to be the most important single variable in characterizing percent body fat

Variable	Correlation Coefficient
Waist	.824
BMI	.745
Chest	.701
Нір	.633
Weight	.617
Thigh	.549
Knee	.492
Neck	.489
Bicep	.482
Forearm	.365
Wrist	.339
Age	.295
Ankle	.245
Height	029
Height	029

Multiple Linear Regression (MLR)

$Y=eta_0+eta_1X_1+eta_2X_2+\dots+eta_pX_p+\epsilon$

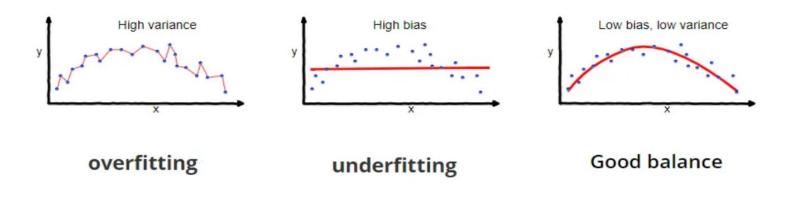
- Arises when more than one explanatory variable is used to explain the outcome of interest
- Relates a dependent variable (Y) to explanatory factors (X's) through a linear form based on unknown parameters (β's) that must be estimated
- Models are fit by minimizing the sum of the squared differences between the observed outcomes and the corresponding points on the regression plane (SSE)

Selection Criterion: AIC

 Akaike Information Criterion (AIC): A statistic that takes both model complexity and goodness-of-fit into consideration, with a lower value indicating a more balanced model

$$AIC = n \log(\hat{\sigma}^2) + 2d$$
 $\hat{\sigma}^2 = SSE/n$

- "goodness-of-fit" term decreases as the conformity of the data to the fitted model improves
- "penalty" term increases with the complexity of the model (d represents the model dimension)


Goodness-of-Fit: R²

$R^2 = 1 - SSE/TSS$

- R² reflects the proportion of the overall variation in the outcome variable that is accounted for by the explanatory variables in our fitted model
- A model with a higher R² value indicates better conformity of the data to our fitted model
- R² can only increase as model complexity increases

Bias-Variability Tradeoff

- Why don't we use a model including all the explanatory variables?
- Why not a simple, one variable model?
- Simple models: high bias, low variability
- Complex models: low bias, high variability

Best Subsets Regression

 Best subsets regression is a model selection technique that generates, fits, and selects the best models for every subset size among a candidate set of explanatory variables

Number in Model	R-Square	AIC	Variables in Model
1	0.679	1488.58	Waist
2	0.723	1453.51	Weight Waist
3	0.734	1445.63	Weight Waist Wrist
4	0.738	1443.06	Age Height Waist Wrist
5	0.741	1442.61	Age Height Chest Waist Wrist
6	0.744	1442.11	Age Height Chest Waist Bicep Wrist
7	0.746	1441.95	Age Height Neck Chest Waist Forearm Wrist
8	0.748	1442.17	Age Height Neck Chest Waist Bicep Forearm Wrist
9	0.749	1443.02	Age Height Neck Chest Waist Hip Thigh Forearm Wrist
10	0.75	1443.93	Age Height Neck Chest Waist Hip Thigh Bicep Forearm Wrist
11	0.75	1445.29	Age Height Neck Chest Waist Hip Thigh Ankle Bicep Forearm Wrist
12	0.75	1447.2	Age Weight Height Neck Chest Waist Hip Thigh Ankle Bicep Forearm Wrist
13	0.75	1449.16	Age Weight Height Neck Chest Waist Hip Thigh Knee Ankle Bicep Forearm Wrist

Multicollinearity

What is multicollinearity?

 Multicollinearity arises when the correlation between pairs of explanatory variables is high

Why is this an issue in regression modeling?

- With multicollinearity, it becomes difficult to distinguish the effects
 of each individual variable on the response variable
- Multicollinearity results in a fitted model that has inaccurate parameter estimates and is highly sensitive to changes in the data

Variable Intercorrelations

	Waist	BMI	Chest	Нір	Weight	Thigh	Knee	Neck	Bicep	Forearm	Wrist	Age	Ankle	Height	
Waist		.913	.91	.861	.874	.737	.710	.728	.656	.530	.602	.243	.407	.187	Key:
BMI	.913		.911	.861	.867	.787	.679	.752	.725	.609	.614	.124	.449	.022	, Correlation:
Chest	.91	.911		.825	.891	.708	.698	.769	.707	.599	.644	.182	.447	.224	
Нір	.861	.861	.825		.933	.881	.809	.708	.722	.604	.626	058	.521	.397	0.8 - 1
Weight	.874	.867	.891	.933		.852	.843	.810	.785	.683	.725	016	.581	.513	
Thigh	.737	.767	.708	.881	.843		.777	.669	.744	.604	.544	216	.504	.350	0.6 - 0.8
Knee	.710	.679	.698	.809	.843	.777		.648	.654	.578	.656	.017	.585	.513	
Neck	.728	.752	.769	.708	.810	.669	.648		.709	.661	.731	.119	.434	.325	0.4 - 0.6
Bicep	.656	.725	.707	.722	.785	.744	.645	.709		.701	.614	044	.449	.319	-0.4 - 0.4
Forearm	.530	.609	.599	.604	.683	.604	.578	.661	.701		.598	085	.429	.322	0.4 0.4
Wrist	.602	.614	.644	.626	.725	.544	.656	.731	.614	.598		.218	.545	.397	
Age	.243	.124	.182	058	016	216	.17	.119	044	085	.218	.210	110	246	
												110	110		
Ankle	.407	.449	.447	.521	.581	.504	.585	.434	.449	.429	.545	110		.395	
Height	.187	.022	.224	.397	.513	.350	.513	.325	.319	.322	.397	246	.395		

Models after considering multicollinearity

 Waist is the most important explanatory variable, so we ran best subsets again excluding variables highly correlated with waist

Number in Model	R-Square	AIC	Variables in Model
2	0.717	1458.48	Waist Wrist
2	0.713	1461.98	Height Waist
3	0.732	1446.64	Height Waist Wrist
3	0.715	1462.35	Age Waist Wrist
4	0.738	1443.06	Age Height Waist Wrist
4	0.733	1448.47	Height Waist Forearm Wrist
5	0.74	1443.67	Age Height Waist Forearm Wrist
5	0.74	1444.29	Age Height Waist Ankle Wrist
6	0.741	. 1444.95	Age Height Neck Waist Forearm Wrist

Combining Practical and Statistical Reasoning

Along with a model that is statistically viable, we want a model that is simple in terms of applicability and understanding

A good model is consistent in terms of its predictive accuracy

We also seek a model that makes scientific sense

Although present in most top models, wrist circumference is not readily available, easily mismeasured, and possibly difficult to defend clinically

Final Model

Body Fat Percentage = -3.10088 + 1.77309(Waist in) - .60154(Height in)

Variable	Parameter Estimation	Standard Error	T Value	P(T > t)
Intercept	-3.10088	7.68611	403	.687
Waist	1.77309	.07158	24.770	< 2.2 * 10 ⁻¹⁶
Height	0.60154	.10994	-5.472	1.09 * 10 ⁻⁷

Interpretation:

- For every one-inch increase in a male's waist size, their body fat percentage increases by 1.77% on average when keeping height constant
- For every one-inch increase in a male's height, their body fat percentage decreases by 0.602% on average when keeping waist size constant

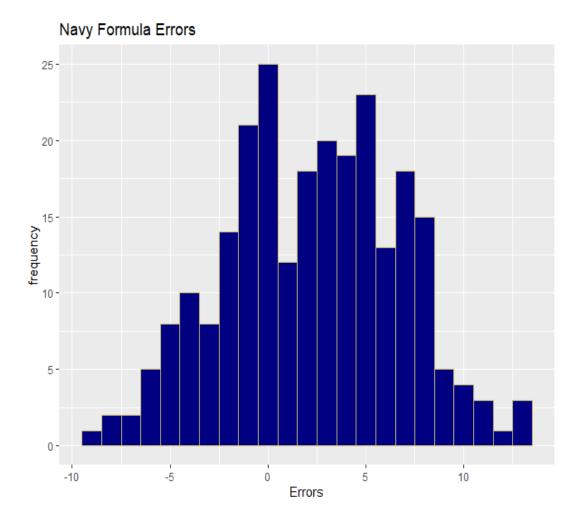
Model Validation

- We seek to assess our model's accuracy in predicting new outcomes
- By randomly splitting the data into two subsets, we simulate our model's predictive accuracy by using one subset as a fitting sample and the other as a validation sample (see figure)
- We will do this several times with different random splits for the validation sets (n = 50) and the training sets (n = 200)
- This process is called repeated split-sample validation

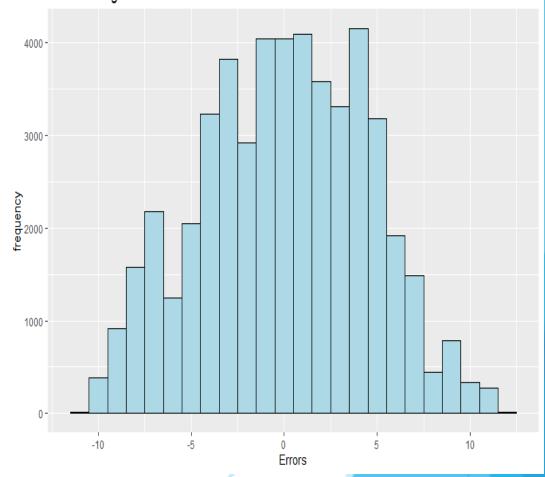
1 Take your sample 2 Split into two uneven groups 3 Use blue cases to predict red cases 4 Record prediction errors: (red prediction - red true value) 5 Repeat with a different random split

Model Validation Results

Models	Number of Variables	Mean Absolute Residuals	Mean Absolute Prediction Error	Interval that captures 80% of prediction errors	Prediction error IQR (middle 50% of errors)
BMI	1	5.523%	5.563%	(-7.256%, 7.662%)	(-4.021%, 3.717%)
Waist	1	4.694%	4.734%	(-6.435%, 6.349%)	(-3.227%, 3.688%)
Waist + Height	2	4.437%	4.501%	(-6.530%, 5.609%)	(-3.197%, 3.519%)
Waist + Height + Age + Wrist	4	4.234%	4.323%	(-6.178%, 5.356%)	(-3.310%, 3.081%)
All Variables	14	4.096%	4.386%	(-6.006%, 5.491%)	(-3.312%, 3.166%)


Main takeaway: Our model performs better than the single variable models and only slightly worse than the more complex models

Our Model vs US Navy Model


- Based on Google searches, the top online body fat calculators use a formula developed by the US Navy
- We used the Navy formula to predict the body fat percentage for the subjects in our data set and compared the prediction errors to our model
- The Navy model does not appear to be more accurate than ours

Model	Waist + Height	US Navy Formula
Mean Absolute Prediction Error	4.501%	5.010%
Interval that captures 80% of prediction errors	(-6.530%, 5.609%)	(-3.892%, 7.797%)
Prediction error IQR (middle 50% of errors)	(-3.197%, 3.519%)	(809%, 5.482%)

Our Model vs US Navy Model: Prediction Error Histograms

Waist + Height Errors

Summary/Conclusion

- For the prediction of the percentage of body fat, there is no true or correct model, and several models are potentially useful
- Based on a combination of practical, scientific, and statistical reasoning, we propose that the best model for predicting body fat percentage is a straightforward bivariable regression model based on waist circumference and height
- Our model outperforms a univariable regression model based on BMI and produces similar results to the US Naval model at predicting body fat percentage

Acknowledgments

Thank you, Dr. Cavanaugh for being a kind, helpful and knowledgeable mentor. We appreciate you!

ISIB program sponsored by the National Heart Lung and Blood Institute (NHLBI), grant #HL-147231

THE College of UNIVERSITY OF LOWA | Public Health

Тне.

References

Blackburn, Henry, and David Jacobs. "Commentary: Origins and Evolution of Body Mass Index (BMI): Continuing Saga." International Journal of Epidemiology, vol. 43, no. 3, 2014, pp. 665–69, https://doi.org/10.1093/ije/dyu061.

Calculating BMI. https://rwjms.rutgers.edu/departments/surgery/divisions/other/division-of-pediatric-surgery/adolescent-obesity-and-foregut surgery-program/calculating-bmi

Medicine, S. DAX body composition analysis, Sports Medicine UC DAvis Health. DAX Body Composition Analysis, Sports Medicine, UC Davis Health. https://health.ucdavis.edu/sports-medicine/resources/dxa-info

Heianza, Yoriko, Lu, Qi. Chapter 14; Genetics of Central Obsesity and Body Fat, "Nutrition in the Prevention and Treatment of Abdominal Obesity." Journal of Nutrition Education and Behavior, vol. 51, no. 9, 2019, pp. 153-174, https://doi.org/10.1016/j.jneb.2019.04.021

Wong, Joseph C., et al. "Comparison of Obesity and Metabolic Syndrome Prevalence Using Fat Mass Index, Body Mass Index and Percentage Body Fat." Plos One, vol. 16, no. 1, 2021, pp. e0245436–e0245436, https://doi.org/10.1371/journal.pone.0245436.

Questions?