Exploring Electrodermal Activity Through Genetic Algorithms as a Proxy For Engagement in Learning Activities

Iowa Summer Institute in Biostatistics (ISIB) 2024
University of Iowa College of Public Health Department of Biostatistics

Morgan Fiebig, University of Wisconsin - Eau Claire Riya Singh, Yale University Ella Sukup, Williams College

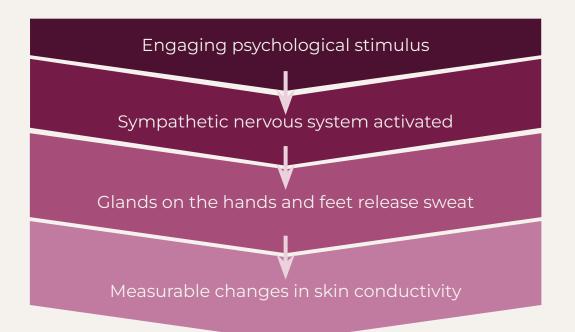
Overview

- Learning and engagement
- The study
- Genetic algorithms
- Intellectual humility and entropy
- Future directions

Learning and Engagement

- Education researchers interested in quantifying engagement in a learning environment
- Investigations of the validity of electrodermal activity as a way to quantify engagement
- We define engagement as a heightened emotional response
- This research could improve learning accessibility and engagement in classrooms

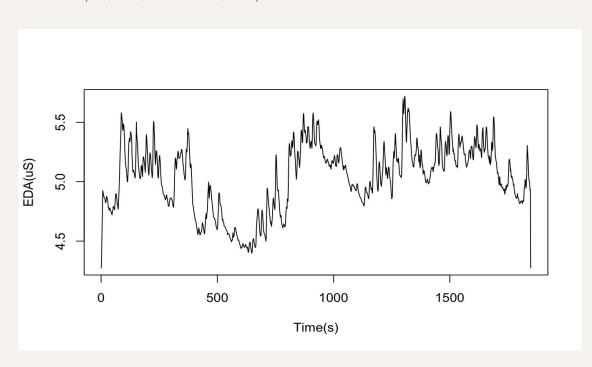
The Study


Objective: To validate the use of EDA as a proxy for engagement

Using EDA to Detect Engagement

Electrodermal Activity (EDA) - changes in skin conductivity resulting from sweat production on the hands and feet in response to a psychological stimulus

Methods


- UI Department of Psychological and Quantitative Foundations
- 20 participants
- 3 activities:
 - a. Ordering rule of three number series (e.g. 2, 4, 6)
 - b. Compound nouns (e.g. potato, tooth, heart)
 - c. Right hand Rubik's cube algorithm
- Reflection questions and breathing between tasks
- EDA monitored
- Sessions video recorded

Genetic Algorithms

Objective: Assess if the genetic algorithm is effective in detecting significant structural breaks

Structural Breaks

(Lee, 2021; Cain and Lee, 2022)

- Structural breaks places where trends in time series have a prominent change
- If EDA is a good proxy for engagement, trends in EDA data should be associated with heightened emotional responses

Genetic Algorithms

(Li and Lund, 2012).

Genetic algorithms solve optimization problems using the principles of natural selection

Genetic Algorithms (Li and Lund, 2012)

Video Analysis

- Focused on 20 second intervals around a breakpoint
- Analyzed post activity reflections to help in the determination of meaningfulness

Assessing the Genetic Algorithm

What are the potential triggers?

- Thinking
- Anticipation
- Frustration
- Positive or negative feedback
- Fidgeting

Where are breakpoints happening?

- 45% of activities contain breakpoints, 55% of activities do not contain breakpoints
- **36%** of breakpoints **are in** an activity, **64%** of breakpoints **are not in** an activity

Intellectual Humility and Entropy

Objective: Determine possible relationship between intellectual humility and entropy

Intellectual Humility

When I don't understand something, I try hard to figure it out.

I love learning.

If I don't understand something, I try to get clear about what exactly is confusing to me.

I care about truth.

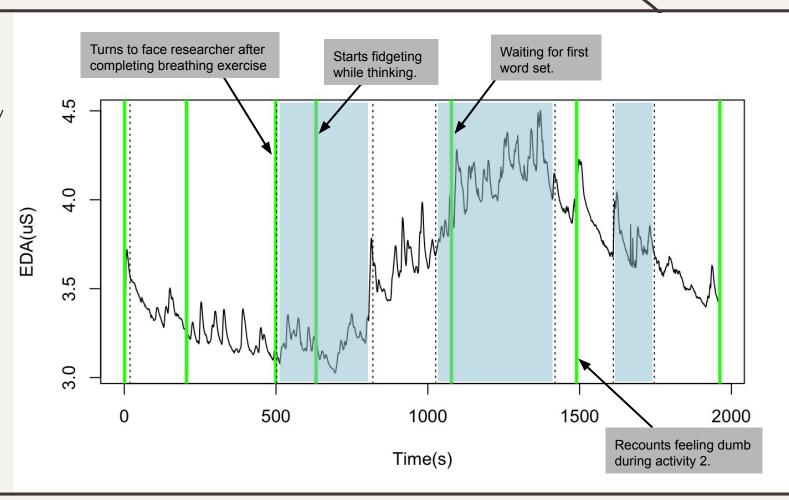
When I think about the limitations of what I know, I feel uncomfortable.*

I focus on my intellectual weaknesses too much.*

I tend to get defensive about my intellectual limitations and weaknesses.*

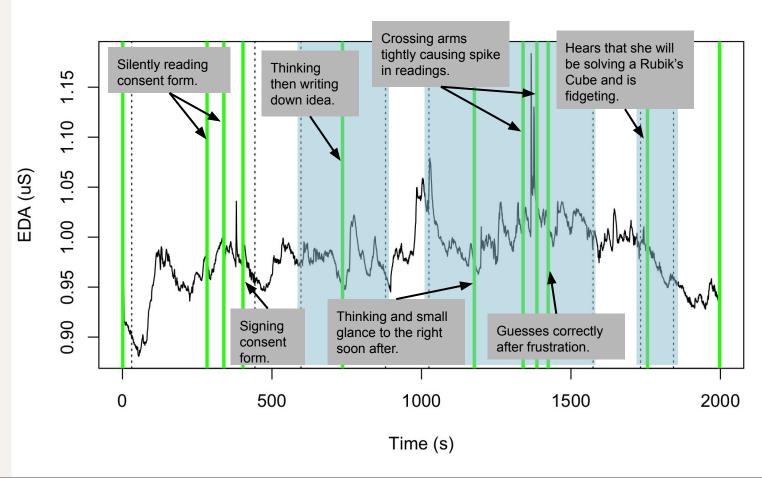
- Intellectual Humility: An individual's willingness to own the limitations of their knowledge
- Calculated through a survey, prior to participation
- Subjects assigned a composite score out of 9

Entropy

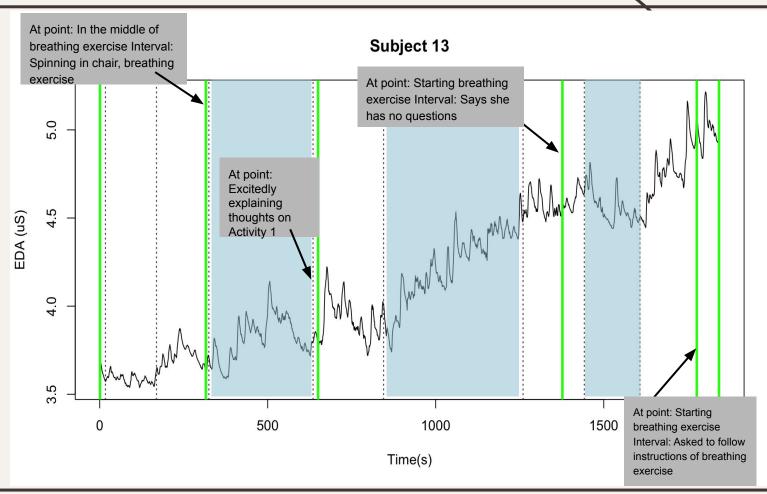

• Entropy: Quantifies unpredictability of time series data (Delgado-Bonal and Marshak, 2019)

$$H(X) = -\sum_{x \in X} p(x) \log p(x).$$

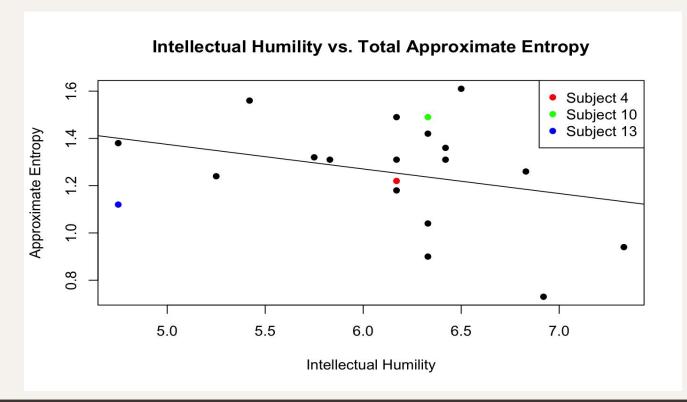
Low Entropy → {0101010101010} High Entropy → {0010111101000}


Subject 4

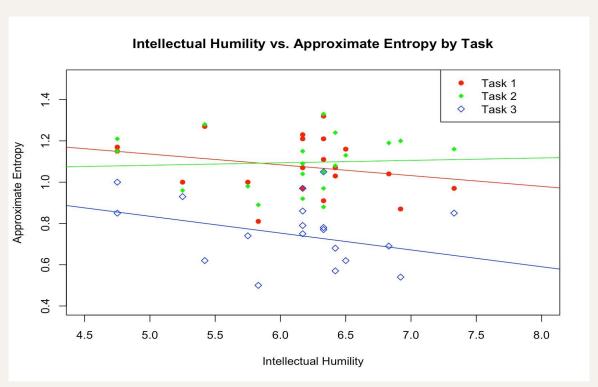
Approximate Entropy - 1.22 Intellectual Humility - 6.17/9


Subject 10

Approximate Entropy - 1.49 Intellectual Humility - 6.33



Subject 13


Approximate Entropy - 1.12 Intellectual Humility - 4.75

Intellectual Humility and Entropy

Intellectual Humility and Entropy

Future Directions

- Explore the reasons for scale variation and subjects lacking breakpoints
- Investigate why the relationship between Intellectual Humility and Approximate Entropy varies between math and language tasks
- Identify any differences between familiar tasks (ie. Rubik's Cube) and new tasks

References

Cain, R. & Lee, V. R. (2022). Measuring Electrodermal Activity in an Afterschool Maker Program to Detect Youth Engagement. In I. Management Association (Ed.), *Research Anthology on Makerspaces and 3D Printing in Education* (pp. 515-536). IGI Global. https://doi.org/10.4018/978-1-6684-6295-9.ch026

Delgado-Bonal, A., & Marshak, A. (2019). Approximate Entropy and Sample Entropy: A Comprehensive Tutorial. *Entropy (Basel, Switzerland)*, 21(6), 541. https://doi.org/10.3390/e21060541

Haggard, M., Rowatt, W. C., Leman, J. C., Meagher, B., Moore, C., Fergus, T., Whitcomb, D., Battaly, H., Baehr, J., & Howard-Snyder, D. (2018). Finding middle ground between intellectual arrogance and intellectual servility: Development and assessment of the limitations-owning intellectual humility scale. *Personality and Individual Differences, 124*, 184–193. https://doi.org/10.1016/j.paid.2017.12.014

Lee, Victor R. "Youth engagement during making: using electrodermal activity data and first-person video to generate evidence-based conjectures." Information and Learning Sciences, vol. 122, no. 3/4, 2021, pp. 270- 291. https://doi.org/10.1108/ILS-08-2020-0178.

Li, S., & Lund, R. (2012). Multiple Changepoint Detection via Genetic Algorithms. *Journal of Climate*, 25(2), 674-686. https://doi.org/10.1175/2011JCLI4055.1

Acknowledgements

Dr. Gideon K. D. Zamba, Professor, Dept. of Biostatistics, University of Iowa

Dr. Matthew Lira, Assistant Professor of Learning Sciences and Educational Psychology, University of Iowa

Dr. Stacey McElroy-Heltzel, Assistant Professor of Counseling Psychology, University of Iowa

Minzhi Liu, Graduate RA, Dept. of Psych & Quant Foundations, University of Iowa

University of Iowa Summer Institute in Biostatistics, College of Public Health

ISIB Program sponsored by the National Heart Lung and Blood Institute, grant # HL161716-01

Questions?