

Research Mentors: Dr. Breheny, Logan Harris

## Does Peptide Receptor Radionuclide Therapy treatment extend the life expectancy in patients with Neuroendocrine Tumors?

Keira, Neon, Gregory July 18, 2024



# Background

## What are NENs?

- Neuroendocrine neoplasms(NENs) are a group of cancer tumors which originate from organs that produce and secrete hormones
- About 2% of all metastasized cancers each year are NENs with a prevalence of <200,000 in the US





# What is PRRT?

- Peptide Receptor Radionuclide Therapy (PRRT) is a treatment used to treat specific cancers (such as NENS)
- FDA approved in 2018
- Used in Europe and Australia for around a decade





## **Survival Analysis**

### <u>Research</u> Question:

Does PRRT treatment extend the life expectancy in patients with NENs?

#### **Key Concepts**

- Time to event data
- Censoring
  - Event of interest not observed for all individuals
  - When patient doesn't experience death by end of study

### Main Goal of Survival Analysis

• Estimate the probability of not experiencing an event of interest over a given period of time



## The Data

**Site**: Where the tumors originated in the body

**Met**: The spread of cancer cells from the place of origin

**tOS**: Time of overall survival measured in years when a patient entered the study

**dOS**: If the patient has experienced death

**tPRRT**: Time when the patient received treatment within the study in years



| <b>^</b> | Age 🍦 | Site 🍦   | Met 🍦 | tOS 🗢 | dOS 🍦 | tPRRT 🗘 |
|----------|-------|----------|-------|-------|-------|---------|
| 1        | 58.4  | Pancreas | FALSE | 14.23 | FALSE | 0.71    |
| 2        | 73.5  | Pancreas | FALSE | 6.96  | TRUE  | NA      |
| 3        | 84.6  | Pancreas | FALSE | 4.97  | TRUE  | NA      |
| 4        | 60.9  | Stomach  | TRUE  | 3.92  | TRUE  | NA      |
| 5        | 57.6  | Pancreas | FALSE | 7.14  | FALSE | NA      |
| 6        | 62.0  | Pancreas | TRUE  | 1.68  | TRUE  | NA      |
| 7        | 54.9  | Pancreas | TRUE  | 5.10  | TRUE  | 0.44    |
| 8        | 61.0  | Pancreas | TRUE  | 4.45  | TRUE  | NA      |
| 9        | 52.9  | Pancreas | TRUE  | 0.50  | TRUE  | NA      |
| 10       | 89.4  | Pancreas | FALSE | 1.92  | FALSE | NA      |

## **Kaplan-Meier Estimates/Curve**

- Fundamental tool used to estimate survival probabilities
- Handles censoring by considering the number of individuals at risk over time then adjusting survival based on observed events
- Non-parametric method: Doesn't assume a specific distribution of survival times and can make survival probabilities estimations at given times



### Kaplan-Meier Curves by PRRT Status (Non-Time Dependent)



## **Immortal Time Bias**

- "Immortal Time" is when patients in a study cannot experience the outcome during the follow-up time
- If immortal time is not properly accounted for it can lead to bias





## **Cox Proportional Hazard Model**

Equation:  $\lambda_i(t) = \lambda_o(t)e^{(xi\beta i)}$ 

- $\lambda_i(t)$  = hazard of an individual
- $\lambda_{\circ}(t)$  = base hazard
- **xi** = covariates
- $\beta_i$  = coefficient

-an equation that gives you a value based on the different factors in your study

 ${}^{-}\!\lambda_{\circ}$  does not need to be calculated to calculate the overall hazard of a person



# Cox Proportional Hazard Model Cont.

# Equation: $\lambda_i(t) = \lambda_o(t)e^{(xi(t)\beta i)}$

- Separates base hazard from covariates  $\circ \lambda_{\circ}(t)$  gets cancelled out
- Separation allows us to have a timedependent covariates
  - $\circ~$  We can graph x\_i(t), covariates over time and calculate individual hazard



# **Methods**

......

6

## Kaplan Meier Curve

- Non-Time Dependent p-value: 7\*10^-6 ٠
- Time Dependent p-value: 0.114 ٠
- Not the final answer, PRRT mainly given to people with metastasis ٠





Kaplan-Meier Curves by PRRT Status (Non-Time Dependent)



### **Covariates**

|      | HR     | Ρ      |
|------|--------|--------|
| PRRT | 0.6198 | 0.0239 |
| Met  | 2.3896 | 0.0073 |
| Sex  | 1.1893 | 0.3636 |
| Age  | 1.6947 | 0.0762 |



## **Evaluating PRRT's Benefits**

- From our data, we conclude that there is a decrease in death risk in regard to age, sex, and metastasis
- We used the cox proportional hazard model to present PRRT as a time-dependent variable
- PRRT reduced death risk by 38% p = 0.0239, compared to p = 7e-06, benefits are overblown



## **Shiny Model**

https://ph-ivshiny.iowa.uiowa.edu/pbreheny/isib/



## Citations

"Immortal Time Bias." *Catalog of Bias*, 4 Sept. 2020, catalogofbias.org/biases/immortal-time-bias/.

Innovasium. "Peptide Receptor Radionuclide Therapy." *Soricimed*, www.soricimed.com/peptide\_receptor\_radionuclide\_therapy.htm. Accessed 17 July 2024.

Oronsky, Bryan, et al. "Nothing but Net: A Review of Neuroendocrine Tumors and Carcinomas." *Neoplasia (New York, N.Y.)*, U.S. National Library of Medicine, Dec. 2017, www.ncbi.nlm.nih.gov/pmc/articles/PMC5678742/.

"T-Test, Chi-Square, ANOVA, Regression, Correlation..." *Datatab*, datatab.net/tutorial/kaplan-meier-curve. Accessed 17 July 2024.



## Acknowledgements

- ISIB Program sponsored by the National Heart Lung and Blood Institute (NHLBI), grant #HL1617-01
- Dr. Patrick Breheny, Professor, Department of Biostatistics, University of Iowa
- Logan Harris, Graduate Student Mentor, Department of Biostatistics, University of lowa



National Heart, Lung, and Blood Institute



**College of Public Health** 





# **Questions?**



## **Cox Proportional Hazard Modeling**

#### **Kaplan-Meier Curve of Metastasis**

#### Cox Proportional Hazard Model of Metastasis





Cox Proportional Hazard by Metastasis Strata + MetFALSE + MetTRUE



