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Healthcare-Associated Infections (HAIs)

• Infections which develop while a patient is receiving care for a separate 
condition

• Can be caused by pathogens resistant to antibiotic treatments
• Can also be caused by antibiotics suppressing probiotics

• Estimated to affect 1 in 31 hospital patients and 1 in 43 nursing home 
residents

• ~687,000 HAI cases and ~72,000 deaths in 2015 in the US

• Direct medical costs of at least $28.4 billion each year in the US
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Clostridioides difficile (C. diff)
• C. diff lives in healthy people's intestines, but is 

typically held in check by "good" bacteria there

• Antibiotics taken for another infection can 

kill good bacteria and allow C. diff to spread 

unchecked

• C. diff can release toxins in the colon that 

damage tissues
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(Mayo Clinic Staff, 2023)

(Kon, 2019)
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Antibiotics

• Previous research identified 9 antibiotics that are linked to a greater 
risk of C. diff infection
o Clindamycin
o Cefixime
o Cefdinir
o Cefuroxime
o Cefpodoxime
o Amoxicillin/Clavulanate
o Moxifloxacin
o Cefaclor
o Linezolid
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(Miller et al, 2023)
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Research Objective

Since antibiotics are a major cause of C. diff infections, it is 
essential to understand how healthcare facilities prescribe 
antibiotics in order to effectively model C. diff incidence.

Our research aims to use machine learning techniques to build 
accurate models for predicting antibiotic usage based on 
patient data such as diagnoses, age, and other variables.
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Premier Health Data
• Collected from U.S. hospital discharge 

records and billing data
• Models use:

• Demographics (sex, race, age, etc.)
• Disease statuses
• Length of stay
• Medications
• Procedures
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We are only working with a subset of 
the Premier Health Data:

- Patients who had at least one inpatient visit 
related to
o Urinary tract infection (UTI)
o Pneumonia

- Collect all other visits from these patients

- Ranges from 2001 to 2021
- ~45 million hospitalization events in sample
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Premier Health 
Data Relations
Tables highlighted in red 
are used in our analysis. 

PATDEMO: patient 
demographics and general 
hospital characteristics 

PATICD_PROC: ICD procedure 
codes 

lu_icdcode: lookup table with 
procedural ICD codes

lu_std_payor: lookup for payer 
types
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Diagnosis Imbalance Problem

• Diagnostic related groups (DRGs) are numeric codes classifying 
patient diagnoses and hospitalization costs
o Ex: DRG 689 – "kidney and urinary tract infections with major complication or 

comorbidity"

• DRGs in sample are heavily related to UTIs and pneumonia
o General model may be biased towards these conditions and their associated 

antibiotics

• Solution is to group data based on each individual DRG
o Create a separate model for each DRG based on all other predictor variables
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Class Rarity Problem

• Some DRGs have very few patients taking a certain antibiotic 
within them (i.e. <1% of patients)
oShould we still fit an entire model on them?

• Decide to treat such cases as if we fitted a model that 
always predicted "no antibiotic" for every input
oTrivially has an accuracy of ≥99%
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Decision Trees
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(Kanade, 2022)
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• Machine learning technique that 
generates sequential decision rules 
which assign data into classes

• Rules are constructed by 
determining which splits result in 
the largest gain of some information 
metric (e.g. Gini impurity)

• Can suffer from overfitting



Random Forests

• Generate unique decision trees 
and aggregate across each 
output to determine overall result
o Generated on different subsets of 

data and features

• Aggregation helps to balance 
out any individual tree's 
overfitting and generates more 
accurate results
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Area Under Curve (AUC)
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• ROC curve measures 
the true vs. false positive rate

• Models with an ROC curve close 
to the upper left corner (area 
under curve is close to 1) are 
favored

• >0.7 AUC generally regarded as 
indicating a good model
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Area Under the ROC Curve Statistics
Grouped by Antibiotic
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Interactive Plot
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Performance
• ~68% of DRG-antibiotic combinations had less than 1% of patients taking the 

antibiotic

• Around 32% of the remaining constructed models exceeded the 0.7 threshold 
for ROC AUC

• Overall, this means that ~78% of the DRG-antibiotic models performed well

• Models predicted well for certain antibiotics, such as moxifloxacin and linezolid

• Models were worse at predicting other antibiotics, such 
as amoxicillin/clavulanate
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Performance (cont.)
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Conclusions
• Model results are inconsistent across antibiotic classes

o Can predict prescription of some antibiotics well, which can help us better 
understand C. diff infection patterns for some antibiotics

• Potential uses:
o Improve models of regional C. diff spread
o Better assess healthcare facilities' risk of getting C. diff

• Further research:
o Improve the models through methods like SMOTE resampling
o Include more predictor variables
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Questions?
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