Patrick Breheny, PhD

Penalized regression is an attractive methodology for dealing with high-dimensional data where classical likelihood approaches to modeling break down. However, its widespread adoption has been hindered by a lack of inferential tools. In particular, penalized regression is very useful for variable selection, but how confident should one be about those selections? How many of those selections would likely have occurred by chance alone? In this talk, I will review recent developments in this area, with an emphasis on my work and that of two former students, Ryan Miiller and Biyue Dai.